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A B S T R A C T

Efforts to improve agroecosystem models require methods for unbiased comparisons among simulation algo-
rithms. With focus on evapotranspiration (ET) in Cotton2K, the objectives were to develop a novel methodology
for evaluating model parameterization options and to compare model performance using three ET algorithms.
The Cotton2K model was updated to include a standardized ET method, and two Penman approaches were also
tested. Sobol global sensitivity analysis and multiobjective optimization were used to identify influential para-
meters and select feasible parameterization options. The three ET methods led to differences in simulation
accuracy for ET, soil water contents, and several plant growth metrics ( <p 0.05). However, no ET method could
consistently outperform the other two methods, and ET simulation errors were up to 60%. The simulation
methodology permitted unbiased comparison of three ET methods in Cotton2K and highlighted areas for model
improvement, including the surface evaporation simulation and the linkage between simulated ET and crop
growth.

1. Introduction

Evapotranspiration (ET) is commonly the greatest pathway of water
loss from crop production systems. As a result, the accuracy of water
balance simulations in agroecosystem models is highly dependent on
how well the model simulates ET. Moreover, the calculations of other
model components, including soil nutrient and crop growth and de-
velopment algorithms, depend on the accuracy of ET and water balance
simulations. These concerns have driven recent efforts to evaluate and
improve ET calculations in many agroecosystem models, including the
Decision Support System for Agrotechnology Transfer (DSSAT)
Cropping System Model (CSM) (Attia et al., 2016; DeJonge et al.,
2012b; Marek et al., 2017; Sau et al., 2004; Thorp et al., 2014b), the
Root Zone Water Quality Model (RZWQM) (Anapalli et al., 2016), and
the Soil and Water Assessment Tool (SWAT) (Marek et al., 2016).
Several of these model evaluation efforts have incorporated high-
quality daily ET data sets, such as those provided by the large weighing
lysimeters at Bushland, Texas (Anapalli et al., 2016; Marek et al., 2016,
2017). Among various methods for ET measurement, weighing lysi-
meters that are properly designed, installed, and managed can provide
accurate ET data for agroecosystem model evaluation (Farahani et al.,

2007).
A variety of methods exist for ET simulation in agroecosystem

models, each having unique limiting assumptions, algorithm com-
plexity, and input data requirements. Naturally, comparisons of dif-
ferent ET approaches both within and among models have aimed to
identify the better performers. Farahani and Bausch (1995) found better
ET estimates from the Shuttleworth and Wallace (1985) method as
compared to a Penman-Monteith approach. Ma et al. (1999) demon-
strated improved ET simulations with energy combination methods as
compared to pan evaporation approaches, particularly when tran-
spiration occurred. Lascano and Van Bavel (2007) compared explicit
and recursive combination methods for computing Penman-based ET,
finding the former to calculate as much as 25% less ET than the latter
on hot summer days in Lubbock, Texas. Anothai et al. (2013) compared
Priestley-Taylor and Penman-Monteith ET approaches in the DSSAT
CSM, finding the latter method to better agree with measured ET data
from Bowen ratio instrumentation. Kang et al. (2009) performed a
comprehensive comparison of ET simulations from three wheat (Tri-
ticum aestivum L.) models (CROPWAT, MODWht, and DSSAT CSM-
CERES-Wheat) using measured ET from the Bushland weighing lysi-
meters and from gravimetric water content measurements at a site in
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China. They noted overall poor simulation performance among the
models and suggested considerable revisions were necessary to improve
ET calculations. They also discussed the effects of interacting model
components on ET simulation performance, highlighting for example
the contribution of leaf area index (LAI) simulation error to ET error
and vice versa. Further demonstrating the divergent nature of ET
methods in agroecosystem models, Kimball et al. (2019) reported large
variability in ET simulation results from an intercomparison of 29
maize (Zea mays L.) models parameterized for Iowa conditions.

The barriers to unbiased comparison of ET methods in agroeco-
system models are substantial. Most agroecosystem models are manu-
ally calibrated, meaning input parameters are adjusted until perfor-
mance is deemed acceptable through simple statistical calculations
(Jacovides and Kontoyiannis, 1995) and human assessment of mea-
sured versus simulated data plots. Computational approaches can
eliminate the potential for modeler bias to influence the calibration
effort. For example, Soldevilla-Martinez et al. (2014) developed a si-
mulated annealing global optimization method to calibrate and com-
pare the DSSAT CSM and the Water and Agrochemicals in soil, crop,
and Vadose Environment (WAVE) model using measured drainage and
ET data from a weighing lysimeter and soil water measurements from
capacitance sensors. While the approach highlighted differences in the
drainage simulations among the two models, a primary disadvantage of
simulated annealing and similar iterative optimization approaches is
that only one solution is recommended by the algorithm despite sub-
stantial computational expense. One alternative seeks to first develop a
comprehensive database of model input and output relationships, and
any assessment of simulation output in comparison with measurements
occurs subsequently (Irmak et al., 2000; Welch et al., 2001). In addition
to the benefit of fully representing model responses to input para-
meterization, the database approach can also improve computational
efficiency, because simulations can be easily parallelized on high-per-
formance computers (Lamsal et al., 2018).

As recognized by Kang et al. (2009), another barrier to objective
evaluation of ET methods in agroecosystem models involves the shared
feedback between the ET algorithm and other model components. For
example, parameter adjustments that improve ET simulations might
also worsen crop yield simulations and vice versa (DeJonge et al.,
2012a). Better ET algorithms should demonstrate better performance in
multiple aspects of the model simulation, not just in the ET simulation
itself. This means that the model parameterization effort requires the
optimization of multiple, often conflicting objectives, as embodied in
the comparison of measurements and simulation output for multiple
types of agronomic data (e.g., LAI, plant dry matter, crop height, yield,
ET, soil water content, etc.). Many approaches for multiobjective op-
timization have been developed for solving engineering design pro-
blems (Chiandussi et al., 2012; Zio and Bazzo, 2012); however, appli-
cation of these methods to agroecosystem model evaluation and
comparison is relatively uncommon. As one example,
Charoenhirunyingyos et al. (2011) combined measured and simulated
data for LAI, ET, and soil water content into a single objective function
and used a genetic algorithm to optimize the Soil Water Atmosphere
Plant (SWAP) model. Similarly, Thorp et al. (2015) used an objective
function that combined measured and simulated data for LAI, ET, crop
height, and seed cotton yield to parameterize CSM-CROPGRO-Cotton
using simulated annealing optimization. Neither of these studies in-
corporated the database approach of Welch et al. (2001) and therefore
suffered the disadvantage of computationally intensive iterative opti-
mization techniques resulting in only one solution. Furthermore, Welch
et al. (2001) described an additional drawback of efforts to combine
multiple variables into a single objective function; it permits the opti-
mizer to differentially gain accuracy in one variable by sacrificing ac-
curacy in another. An improved strategy for multiobjective optimiza-
tion problems involves the computation and assessment of solutions
among the Pareto optimal set (Cheikh et al., 2010; Mishra and Harit,
2010; Taboada et al., 2007; Welch et al., 2001), which is the subset of

possible solutions that are not dominated by any other solution
(mathematical definition to follow). Unfortunately, a single solution
rarely optimizes all objective functions in multiobjective problems;
however, the set of plausible solutions can be objectively narrowed by
computing the Pareto optimal solutions.

A final barrier to unbiased evaluation of ET methods in agroeco-
system models involves the statistical approaches used to make com-
parisons. Evaluations of models rarely entail more than calculations of
simple statistical metrics, such as root mean squared error (RMSE) or
mean bias error (MBE). Jacovides and Kontoyiannis (1995) demon-
strated how RMSE and MBE can be combined to calculate the t-statistic,
which when compared to a critical t value from standard statistical
tables can assess the statistical significance of the model's calculations
at a given confidence level. In their comparison of four ET simulation
methods, the best performer was sometimes improperly selected if
statistical hypothesis tests were not incorporated in the analysis. Based
on hierarchical linear regression modeling, Thorp et al. (2014b) showed
that CSM-CROPGRO-Cotton simulations of yield and ET could explain
variability in the measured data, independent of the growing season.
Their methodology provided statistical support that the model was re-
sponding appropriately to the agronomic treatments imposed in a given
year. By using assessments of statistical inference to compare ET
methods in agroecosystem models, the conclusions regarding the re-
lative performance of each method can be strengthened.

The overall goal of this study was to develop a novel methodology
for unbiased evaluation and comparison of three ET algorithms in the
Cotton2K agroecosystem model (http://departments.agri.huji.ac.il/
fieldcrops/cotton/). Field data for the analysis included ET measure-
ments from weighing lysimeters at Bushland, Texas and other agro-
nomic measurements from surrounding field experiments that com-
pared fully irrigated, deficit irrigated, and dryland cotton (Gossypium
hirsutum L.) production. Specific objectives were to 1) incorporate
global sensitivity analysis, multiobjective optimization, and high-per-
formance computing to fully evaluate Cotton2K parameterization op-
tions, 2) compare the effects of three ET algorithms on the accuracy of
simulated ET, cotton fiber and seed yield, soil water content, and plant
growth metrics using statistical inference, and 3) evaluate ET simula-
tion behavior in Cotton2K using crop coefficient methods.

2. Materials and methods

2.1. Simulation workflow

A novel simulation approach was developed for unbiased analysis
and comparison of simulation results for three ET algorithms in
Cotton2K (Fig. 1). Aspects of the workflow included 1) a Sobol sam-
pling scheme to choose large numbers of input parameterization op-
tions from a high-dimensional parameter space, 2) high-performance
computing to efficiently conduct large numbers of Cotton2K simula-
tions, 3) a database approach to link input parameter sets with error
statistics from comparisons of measured and simulated data, 4) a global
sensitivity analysis (GSA) to identify influential Cotton2K input para-
meters, 5) a multiobjective optimization (MOO) method to calculate
Pareto optimal solution sets by evaluating model error statistics among
multiple agroecosystem metrics, 6) a pruning algorithm to cull Pareto
optimal solutions based on a user-specified order for objective function
priority, and 7) classical inferential statistics to assess differences in
model performance among the pruned Pareto optimal sets for each ET
algorithm. Further details on the field measurements, the Cotton2K
model, and the workflow implementation are described in the following
sections.

2.2. Field measurements

Cotton field experiments to quantify ET of fully irrigated, deficit
irrigated, and dryland cotton production were conducted in four
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weighing lysimetry fields at the USDA-ARS Conservation and
Production Research Laboratory (CPRL) near Bushland, Texas
(35.187∘N; 102.097∘W; 1170m above mean sea level) during the 2000
and 2001 growing seasons (Howell et al., 2004). Also, the Bushland
Evapotranspiration and Agricultural Remote sensing EXperiment
(BEAREX08) quantified ET for fully irrigated and dryland cotton pro-
duction at the same site during 2008 (Evett et al., 2012). The soil
texture at the site was predominantly clay loam and silty clay loam, as
determined from textural analysis of soil samples (Tolk et al., 1998).
Growing season precipitation (short crop reference ET) from April
through September amounted to 155 (1707), 160 (1579), and 230
(1624) mm in 2000, 2001, and 2008, respectively. Strong regional
advection from the south and southwest typically led to high reference
ET values at the site, and low precipitation levels led to water limitation
and need for irrigation. In all three seasons, irrigation was applied using
a 10-span lateral-move overhead sprinkler irrigation system (Lindsay
Manufacturing, Omaha, Nebraska) equipped with mid-elevation spray
application (MESA) nozzles at a height of approximately 1.5 m above
the ground surface. The machine was oriented from north to south,
traveled in an east or west direction, and irrigated two lysimeter fields
simultaneously.

Four large weighing lysimeters were installed at the Bushland field
site in the 1980's (Marek et al., 1988) and have been used to monitor ET
for a variety of crops for nearly three decades (Evett et al., 2012, 2016;
Howell et al., 1995, 2004). During the 2000 and 2001 cotton studies,
the southeast and northeast lysimeter fields were managed using full
and limited irrigation, respectively. Full irrigation was defined as
weekly irrigation to replenish root zone soil water content to field ca-
pacity, and limited irrigation was half of the full rate. In 2008 season,

both the northeast and southeast lysimeter fields were fully irrigated.
The northwest and southwest lysimeter fields were not irrigated (dry-
land production) in 2001 or 2002, and less than 130mm was applied in
the 2008 early season to encourage germination and emergence. Soil
water content was periodically measured at two access tube locations in
each lysimeter using a calibrated neutron scattering probe (model
503DR Hydroprobe, CPN International, Inc., Martinez, California),
which provided data from 0.1 to 1.9 m in 0.2m incremental depths.
Specific protocols for weighing lysimeter measurements during the
three cotton growing seasons were given by Howell et al. (2004) and
Evett et al. (2012). Howell et al. (1995) discussed the calibration
technique for mass measurement within the lysimeter, which can pro-
vide ET estimates at time scales less than 1 h. More recently, Marek
et al. (2014) presented techniques for quality assurance and quality
control of data collected from the lysimeters. Based on this post-pro-
cessing protocol, lysimeter ET data for the present study was aggregated
on a daily basis from 1 January through 31 December in 2000, 2001,
and 2008.

Cotton planting dates ranged from mid-May to early June in the
three growing seasons. After establishment, cotton plants were de-
structively sampled on a two-week basis from small areas (1.0–2.0 m2)
more than 10m away from the lysimeter. The samples were processed
in the laboratory to estimate leaf area index (LAI), leaf dry matter
(LDM), stem dry matter (SDM), boll dry matter (BDM), canopy height
(CHT), mainstem node count (NOD), green boll count (GBL), and ma-
ture boll count (MBL). Cotton harvest dates ranged from late October to
early December in the three growing seasons. Yield measurements were
obtained by sampling mature bolls from five 10.0 m2 areas in each ly-
simeter field. Turnout percentages were measured using a small re-
search gin, which provided data for fiber yield (FBY), cottonseed yield
(SDY), and seed cotton yield (SCY).

2.3. Cotton2K

The Cotton2K agroecosystem model is described online at the
website provided previously and was recently reviewed by Thorp et al.
(2014a). Model development descended from several early and notable
efforts in cotton growth modeling, including GOSSYM (Baker et al.,
1972, 1983), SIMCOTI (Baker et al., 1972), SIMCOTII (Jones et al.,
1974), and CALGOS (Marani et al., 1992a, b, c). Primarily, Cotton2K
made these models more relevant for cotton production in arid, irri-
gated environments, such as the western U.S. and Israel. Whereas
GOSSYM calculates water balance processes on a daily time step, Cot-
ton2K uses hourly weather information to calculate hourly water and
energy balances, which is thought to improve the accuracy of the
model's ET calculations.

Cotton2K simulates a two-dimensional soil profile with a depth of
2m and width equal to the cotton row spacing (Lambert et al., 1976;
Bar-Yosef et al., 1982). The soil profile is divided into a fixed number of
small compartments, both horizontally and vertically. Water and ni-
trogen contents and root growth are calculated in each compartment.
Additionally, the compartments are grouped vertically into a set of nine
soil horizons, each with a thickness of 15 cm. Van Genuchten (1980)
parameters are used to define the soil water holding and hydraulic
conductivity characteristics in each soil horizon. These were de-
termined by fitting the model to soil water measurements and other
data, as discussed later. Due to lacking experimental data, initial con-
ditions for nitrate and ammonium were assumed to be 5.0 kg ha−1 for
all soil horizons and all simulations. Initial organic matter was specified
uniquely for each experimental year based on limited pre-season mea-
surements of surface organic matter at the field site and estimates of
vertical organic matter distribution from a USDA soil survey of the
study area. Initial soil water content was estimated as the average of
neutron scattering probe readings during the subsequent growing
season and were specified uniquely for each lysimeter field. Manage-
ment information required by the model, including irrigation and

Fig. 1. Workflow to incorporate 1) a Sobol global sensitivity analysis using
Python's Sensitivity Analysis (SALib) module, 2) Cotton2K simulations on the
Ceres high performance computer (HPC), 3) a database approach for linking
Sobol parameter sets with root mean squared error (RMSE) between measured
and simulated data, 4) multiobjective optimization to identify Pareto optimal
parameter sets, and 5) inferential statistics on RMSE from pruned Pareto op-
timal parameter sets for unbiased comparison of three evapotranspiration (ET)
methods.
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fertilization schedules and dates of planting and harvest, was specified
as recorded for each lysimeter field.

Highly detailed and comprehensive simulations of cotton develop-
ment and growth and are possible with Cotton2K. The model simulates
development of mainstem nodes in response to air temperature using
heat unit concepts, and the development of vegetative or fruiting
branches from each mainstem node is also simulated. Development of
leaves and reproductive structures, including squares, green bolls, and
mature bolls, is simulated at individual sites along the vegetative and
fruiting branches. This permits simulation of cotton plant maps, where
the position of each reproductive structure on the simulated plant is
explicitly considered. Growth rates of unique plant organs, including
roots, stems, leaf blades, petioles, squares, green bolls, and mature
bolls, are based on carbon supply and demand relationships. Effects of
water stress on simulated plant growth are calculated as a function of
leaf water potential, and nitrogen stress effects depend on supply and
demand relationships for nitrogen in vegetative material, fruits, and
roots (Jones et al., 1974). Stress alters simulated plant growth via re-
ductions in organ growth potential and shedding of squares and bolls
(i.e., abscissions). A set of 51 variety parameters are used to simulate
the effects of genetics on cotton growth and development responses.

A number of source code edits were required to facilitate efficient
model input/output (I/O) for high-performance computing and to
correct any encountered coding errors. For example, the model code
was altered to directly output soil water contents corresponding to the
positions of neutron scattering probe measurements. Also, some para-
meter sets caused underflow or overflow errors at run time, which re-
quired coding edits to restrict ranges for certain state variables. A
Fortran version of Cotton2K was obtained from the developers of the
PALMScot landscape-scale cotton modeling tool (Booker et al., 2014,
2015). Although a newer C++ version of Cotton2K exists, the code for
cotton growth simulations is interwoven with code for its Microsoft
Windows-based graphical user interface (GUI), which precluded its use
on a Linux high-performance computing system. After incorporating
coding edits, the model was compiled using “gfortran” within the open-
source “GNU's Not Unix!” (GNU) compiler collection (www.gnu.org).

2.4. Evapotranspiration methods

The ET methodology in Cotton2K is based on the California
Irrigation Management Information System (CIMIS) algorithm using the
modified Penman equation (Snyder and Pruitt, 1985). Two options are
possible for obtaining the required hourly weather information: either
input hourly data directly as measured (CIMIS-HR) or use the metho-
dology of Ephrath et al. (1996) to estimate hourly data from daily
measurements (CIMIS-DY). Both of these options were tested in this
study (Table 1). Required hourly meteorological information, including
solar irradiance (MJ m−2), air temperature (∘C), dew point temperature
(∘C), and wind speed (km d−1), was obtained from a Texas High Plains
ET Network weather station, which was positioned over a well-watered,
clipped grass surface adjacent to the field site. Hourly precipitation data
(mm) were obtained from a tipping bucket rain gauge managed by the
experimentalists at the field site. Daily weather inputs included max-
imum and minimum daily air temperature along with the daily ag-
gregations of the other weather measurements.

Since the initial development of the Cotton2K model, efforts in the

ET community have aimed to standardize ET computations (Allen et al.,
1998; Walter et al., 2005). Therefore, a third ET option (ASCEK-HR,
Table 1) was added to Cotton2K based on the findings of DeJonge and
Thorp (2017), who demonstrated the use of more modern and stan-
dardized ET methodologies to identify problematic ET responses in
another agroecosystem model. Computations of short crop reference ET
(ETos) or tall crop reference ET (ETrs) from meteorological data form the
basis of standardized ET (ETsz) calculations (Walter et al., 2005). The
standard algorithm for hourly ETos was added to Cotton2K, which re-
quired the same hourly weather data as discussed previously. Similar to
DeJonge and Thorp (2017), a dual crop coefficient methodology (Allen
et al., 1998) was used in the ASCEK-HR ET method to calculate basal
crop coefficients (Kcb) from simulated LAI:

= + − − −K K (K K )(1 exp[ S (LAI)])cb cbmin cbmax cbmin Kc (1)

Maximum Kcb (Kcbmax) was specified as 1.25, based on the FAO-56
tabulated value for cotton with appropriate adjustment for the
Bushland environment. The Kcbmin and SKc factors were fixed at 0.0 and
0.6, respectively, as discussed in DeJonge and Thorp (2017). Eva-
poration coefficients (Ke) were calculated using the methods described
in FAO-56 (Allen et al., 1998). Daily ETos was summed from hourly ETos

and used to calculate daily potential transpiration (EPo=KcbETos) and
potential soil water evaporation (ESo=KeETos). Although a standar-
dized ETos algorithm for daily weather data also exists (Walter et al.,
2005), it was deemed nonsensical for the current study, because the
Cotton2K water balance fundamentally operates with an hourly time-
step. Even with the CIMIS-DY ET method (Table 1), daily weather data
was immediately converted to hourly data upon input to the model
(Ephrath et al., 1996).

2.5. Simulations

Cotton2K was setup to run 12 simulation scenarios based on the
three cotton growing seasons and four uniquely managed lysimeter
fields (Table 2). Simulations were initiated on 1 January of each year
and concluded on the recorded harvest date for each lysimeter field.
Within the southwest lysimeter field in 2001, twin rows spaced 25 cm
apart were planted on 76 cm centers. Because Cotton2K did not con-
sider this planting configuration, a row spacing of 38 cm (i.e., half of
76 cm) was simulated.

Simulations were conducted using USDA's new high performance
computing resource called Ceres, which consists of 64 compute nodes
each having 40 logical cores on Intel Xeon processors with hyper-
threading and a shared 2 PB storage system with Lustre design. The
operating system on Ceres was a Linux CentOS distribution (ver. 6.7).
Located in Ames, Iowa, access to Ceres occurred via the dedicated high-
speed networking resource called SCINet. About 60 Cotton2K simula-
tions s−1 were possible on Ceres, as compared to no more than 3 si-
mulations s−1 on a modern desktop machine. Thus, high performance
computing increased simulation capability by a factor of 20.

A Python script (www.python.org) that incorporated Python's
“multiprocessing” package was developed to manage the simulation
tasks on Ceres. The Python script loaded a list of parameter sets into a
processing queue, created 40 working directories for conducting si-
mulations in parallel, and copied pertinent Cotton2K files to each di-
rectory. It then established 40 independent worker processes, one for

Table 1
Summary of Cotton2K evapotranspiration (ET) algorithms tested in this study.

Method Description

CIMIS-DY California Irrigation Management Information System (CIMIS) algorithm using the modified Penman equation (Snyder and Pruitt, 1985). Required hourly weather
data is computed from daily data based on Ephrath et al. (1996).

CIMIS-HR CIMIS algorithm using the modified Penman equation (Snyder and Pruitt, 1985). Required hourly weather data is input directly as measured.
ASCEK-HR American Society of Civil Engineers (ASCE) standardized short crop reference ET (ETos) algorithm (Walter et al., 2005) adjusted for cotton based on a dual crop

coefficient methodology (Allen et al., 1998; DeJonge and Thorp, 2017). Required hourly weather data is input directly as measured.
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each requested processing core. Each worker process iteratively se-
lected an item from the processing queue, adjusted Cotton2K input files
to incorporate the current parameter set, conducted the 12 simulation
scenarios, and extracted simulated data from Cotton2K output files for
pairing with associated measurements. Measured and simulated data
for 22 agroecosystem metrics (Table 3) were aggregated among the 12
simulation scenarios (Table 2) for each tested parameter set by calcu-
lating the percent root mean squared error (%RMSE) uniquely for each
metric:

∑= = −
=

f
n

m sm s
m

%RMSE ( , ) 100 1 ( )i i i i
i i j

n

ij ij
1

2
i

(2)

where mi, si, and ni are the measured and simulated data vectors and
vector length, respectively, among the 12 scenarios for the ith metric
(Table 3). The Python script and simulation job concluded by out-
putting a model response database that included the Cotton2K input
parameter sets with associated %RMSE statistics for each of the 22

agroecosystem metrics.

2.6. First sobol sampling

The simulation workflow entailed two main phases: one leading to a
Sobol global sensitivity analysis and another leading to a multiobjective
optimization approach for model calibration (Fig. 1). Both phases
began by using a Sobol sampling procedure to choose high-dimensional
parameter sets for input to Cotton2K. A Python script that incorporated
the Sensitivity Analysis Library (SALib) was developed to conduct the
Sobol sampling and later to compute the Sobol sensitivity indices
(Saltelli, 2002; Saltelli et al., 2010; Sobol, 2001). Sobol sampling
techniques were previously shown to be advantageous and more effi-
cient to develop databases that describe high-dimensional model input
and output relationships (Lamsal et al., 2018), because the Sobol al-
gorithm can select parameter sets that are more evenly dispersed across
the multidimensional parameter space.

Initially, 72 model input parameters were sampled for inclusion in
the Sobol GSA (Table 4): 1) 18 parameters that defined the sand and
clay contents for each of the nine soil horizons, 2) two parameters that
define the soil matric potential at field capacity (SMPFC) and at which
free drainage occurs (SMPFD), 3) the 51 cotton variety parameters
(VARPAR01 through VARPAR51), and 4) the SKc parameter for ET si-
mulations with the ASCEK-HR method (Eq. (1)). The sand and clay
contents chosen by the Sobol algorithm were input to the Rosetta
pedotransfer function (Zhang and Schaap, 2017) to calculate the asso-
ciated Van Genuchten (1980) parameters for each soil horizon. Ap-
propriate parameter ranges (Table 4) for sand and clay were based on
texture measurements of soil samples collected at the field site (Tolk
et al., 1998). Based on recommendations in the model documentation,
SMPFC ranged from −0.38 to −0.28 bars, and SMPFD ranged from
−0.15 to −0.05 bars (1 bar= 100 kPa). Appropriate ranges for variety
parameters were chosen by using spreadsheet software (Excel, 2013;
Microsoft Corporation, Redmond, Washington) to test outcomes of the
model equations that incorporated each parameter (Table 4). The ap-
propriate equations were taken from the model code and programmed
into the spreadsheet to facilitate tests of equation outcomes with dif-
ferent input parameter values, which permitted specification of rea-
sonable parameter ranges. The SKc parameter was varied from 0.5 to 0.9
based on the recommendation of DeJonge and Thorp (2017). Many of
the Cotton2K variety parameters are unitless variables used in empirical
equations that drive specific plant growth or development character-
istics.

The N parameter of the Sobol sampling algorithm was set to 34,723

Table 2
Summary of the 12 cotton management scenarios evaluated with Cotton2K. Field experiments were conducted within the four weighing lysimeter fields at Bushland,
Texas, USA in 2000, 2001, and 2008.a

Year Lysimeter Planting Row Plant Irrigation Rainfallb Harvest

Field Date (DOY) Spacing Spacing Depth Depth Date (DOY)

(cm) (p m−1) (mm) (mm)

2000 NE 16 May (137) 76 17.6 292 203 6 Dec (341)
2000 NW 15 May (136) 76 23.0 0 203 6 Dec (341)
2000 SE 16 May (137) 76 18.6 534 203 6 Dec (341)
2000 SW 15 May (136) 25 18.8 0 203 6 Dec (341)
2001 NE 16 May (136) 76 14.9 213 277 3 Nov (307)
2001 NW 16 May (136) 76 12.3 0 277 20 Oct (293)
2001 SE 16 May (136) 76 15.3 403 277 16 Nov (320)
2001 SW 16 May (136) 38 7.1 0 277 20 Oct (293)
2008 NE 21 May (142) 76 12.6 409 334 24 Nov (329)
2008 NW 5 Jun (157) 76 10.1 129 334 29 Nov (334)
2008 SE 21 May (142) 76 11.5 410 334 25 Nov (330)
2008 SW 5 Jun (157) 76 13.5 129 334 24 Nov (329)

a Day of year, DOY; northeast, NE; northwest, NW; southeast, SE; southwest, SW.
b 1 January to 30 September.

Table 3
Agroecosystem metrics evaluated for 12 cotton management scenarios within
the lysimeter fields at Bushland, Texas, USA. The 22 metrics are listed in
priority order for evaluation of the Cotton2K agroecosystem model using
multiobjective optimization techniques.

Metric Description Unit n

ET Evapotranspiration mm d−1 3761
FBY Fiber yield kg ha−1 12
LAI Leaf area index m2 m−2 72
SCY Seed cotton yield kg ha−1 12
CHT Canopy height m 72
SDY Cottonseed yield kg ha−1 12
NOD Mainstem node number nodes 42
LDM Leaf dry matter kg ha−1 72
SDM Stem dry matter kg ha−1 44
GBL Green boll number bolls 24
MBL Mature boll number bolls 32
BDM Boll dry matter kg ha−1 44
SWC010 Soil water content at 10 cm cm3 cm−3 106
SWC030 Soil water content at 30 cm cm3 cm−3 107
SWC050 Soil water content at 50 cm cm3 cm−3 107
SWC070 Soil water content at 70 cm cm3 cm−3 107
SWC090 Soil water content at 90 cm cm3 cm−3 107
SWC110 Soil water content at 110 cm cm3 cm−3 107
SWC130 Soil water content at 130 cm cm3 cm−3 107
SWC150 Soil water content at 150 cm cm3 cm−3 107
SWC170 Soil water content at 170 cm cm3 cm−3 107
SWC190 Soil water content at 190 cm cm3 cm−3 98
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Table 4
Cotton2K parameters included in the Sobol global sensitivity analysis (GSA) and their ranges. Influential parameters are denoted (*). Optimized parameter values for
three Cotton2K evapotranspiration methods (CIMIS-DY, CIMIS-HR, and ASCEK-HR) are provided for influential parameters, and the remaining parameters were
specified with default values.a

Parameter Function LB UB GSA CIMIS-DY CIMIS-HR ASCEK-HR

CLAY015 Clay at 15 cm (%) 25.0 45.0 * 26.3 30.5 30.5
CLAY030 Clay at 30 cm (%) 25.0 45.0 * 30.9 29.0 29.0
CLAY045 Clay at 45 cm (%) 25.0 45.0 * 32.3 35.1 35.1
CLAY060 Clay at 60 cm (%) 25.0 45.0 * 26.1 39.8 39.8
CLAY090 Clay at 90 cm (%) 25.0 45.0 * 39.5 31.9 31.9
CLAY120 Clay at 120 cm (%) 25.0 45.0 * 26.7 28.7 28.7
CLAY150 Clay at 150 cm (%) 25.0 45.0 * 34.8 26.9 26.9
CLAY180 Clay at 180 cm (%) 25.0 45.0 * 26.5 37.8 37.8
CLAY210 Clay at 210 cm (%) 25.0 45.0 * 43.3 36.0 36.0
SAND015 Sand at 15 cm (%) 15.0 25.0 * 24.9 17.8 17.8
SAND030 Sand at 30 cm (%) 15.0 25.0 * 16.5 20.5 20.5
SAND045 Sand at 45 cm (%) 15.0 25.0 * 16.3 20.9 20.9
SAND060 Sand at 60 cm (%) 15.0 25.0 * 22.1 21.8 21.8
SAND090 Sand at 90 cm (%) 15.0 25.0 * 22.8 19.9 19.9
SAND120 Sand at 120 cm (%) 15.0 25.0 * 24.5 17.1 17.1
SAND150 Sand at 150 cm (%) 15.0 25.0 * 17.1 21.5 21.5
SAND180 Sand at 180 cm (%) 15.0 25.0 * 24.3 15.7 15.7
SAND210 Sand at 210 cm (%) 15.0 25.0 * 21.2 22.7 22.7
SMPFC SMP at field capacity (bars) −0.38 −0.28 * −0.379 −0.355 −0.355
SMPFD SMP for free drainage (bars) −0.15 −0.05 * −0.126 −0.139 −0.139
VARPAR01 Plant density effect on growth 0.00 0.08 * 0.03012 0.03964 0.03964
VARPAR02 Leaf growth at prefruiting nodes 0.00 0.60 0.30 0.30 0.30
VARPAR03 Leaf growth at prefruiting nodes 0.00 0.10 0.014 0.014 0.014
VARPAR04 Leaf growth at prefruiting nodes 0.00 1.00 * 0.12897 0.32599 0.32599
VARPAR05 Leaf growth on mainstem nodes 0.50 3.00 1.60 1.60 1.60
VARPAR06 Leaf growth on mainstem nodes 0.00 0.02 0.010 0.010 0.010
VARPAR07 Leaf growth on mainstem nodes 18.0 28.0 24.0 24.0 24.0
VARPAR08 Leaf growth on fruiting branches 0.00 0.20 0.10 0.10 0.10
VARPAR09 Boll growth period (PD) 18.0 38.0 28.0 28.0 28.0
VARPAR10 Boll growth rate (g PD−1) 0.10 0.45 0.3293 0.3293 0.3293
VARPAR11 Maximum dry boll mass (g) 3.00 15.0 8.800 8.800 8.800
VARPAR12 Pre-squaring stem growth 0.00 2.00 * 0.21521 0.02576 0.02576
VARPAR13 Pre-squaring stem growth 0.00 2.00 0.040 0.040 0.040
VARPAR14 Pre-squaring stem growth 0.00 0.08 0.014 0.014 0.014
VARPAR15 Post-squaring stem growth 1.00 4.00 2.4 2.4 2.4
VARPAR16 Post-squaring stem growth 0.50 2.00 1.50 1.50 1.50
VARPAR17 Post-squaring stem growth 0.00 1.00 0.40 0.40 0.40
VARPAR18 Post-squaring stem growth 0.00 0.20 0.140 0.140 0.140
VARPAR19 Vertical mainstem growth 0.00 0.50 0.20 0.20 0.20
VARPAR20 Vertical mainstem growth 0.00 0.10 0.02 0.02 0.02
VARPAR21 Vertical mainstem growth 10.00 18.0 * 14.34033 12.94189 12.94189
VARPAR22 Vertical mainstem growth −4.00 −2.00 * −2.07385 −2.00330 −2.00330
VARPAR23 Vertical mainstem growth 0.09 0.12 0.10 0.10 0.10
VARPAR24 Vertical mainstem growth 0.00 0.50 0.175 0.175 0.175
VARPAR25 Vertical mainstem growth 1.00 4.00 2.20 2.20 2.20
VARPAR26 Vertical mainstem growth 0.70 1.30 * 1.18629 1.03512 1.03512
VARPAR27 Mainstem node delay, C stress 0.50 1.00 0.82 0.82 0.82
VARPAR28 Fruiting site delay, C stress 1.00 3.00 2.15 2.15 2.15
VARPAR29 Fruiting site delay, C stress 1.00 3.00 1.36 1.36 1.36
VARPAR30 Temperature effect on squaring 0.70 1.30 * 1.15787 1.00377 1.00377
VARPAR31 Prefruit node development (PD) 1.00 5.00 * 2.70044 2.50366 2.50366
VARPAR32 Prefruit node development (PD) 1.00 3.00 * 2.43665 1.21277 1.21277
VARPAR33 Prefruit node development (PD) 0.50 1.00 0.80 0.80 0.80
VARPAR34 Initial leaf area (dm2) 0.01 0.10 * 0.06023 0.01491 0.01491
VARPAR35 Fruiting branch development −32.0 −26.0 * −27.34802 −26.05164 −26.05164
VARPAR36 Fruiting site development −57.0 −49.0 −54.00 −54.00 −54.00
VARPAR37 Fruiting site development 0.00 2.00 0.80 0.80 0.80
VARPAR38 Defoliant effect on leaf age 0.00 5.00 3.20 3.20 3.20
VARPAR39 Temperature effect, dehiscence −306.0 −240.0 −292.0 −292.0 −292.0
VARPAR40 Temperature effect, dehiscence 0.70 1.30 1.08 1.08 1.08
VARPAR41 Temperature effect, turnout 45.0 60.0 56.80 56.80 56.80
VARPAR42 Temperature effect, turnout 0.30 0.90 0.5500 0.5500 0.5500
VARPAR43 Shedding intensity, C stress 0.30 0.70 0.53 0.53 0.53
VARPAR44 Shedding intensity, water stress 0.30 0.70 0.48 0.48 0.48
VARPAR45 Probability of square abscission 0.10 0.50 0.24 0.24 0.24
VARPAR46 Probability of square abscission 0.00 0.15 0.08 0.08 0.08
VARPAR47 Probability of boll abscission 1.00 10.0 * 2.75616 3.04620 3.04620
VARPAR48 Probability of boll abscission 0.30 1.50 * 0.58030 0.32908 0.32908
VARPAR49 Probability of boll abscission 5.00 15.0 * 11.67297 11.25305 11.25305
VARPAR50 Probability of boll abscission 0.20 1.20 * 0.90380 0.68602 0.68602
VARPAR51 Seed cotton mass per boll (g) 2.00 8.00 5.00 5.00 5.00

(continued on next page)
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with specification to prepare for calculation of second-order sensitivity
effects. Thus, the number of n-dimensional parameter sets ( =n 72)
chosen by Sobol for the Sobol GSA was + =N n(2 2) 5,069,558, as de-
fined within the Sobol algorithm (Table 5). The value of N was selected
based on preliminary estimates of the rate of simulations on Ceres, with
plans to contain the simulation timeframe to within a couple weeks.
Most importantly, as revealed by later tests, the number of simulations
was more than satisfactory to ensure stability of Sobol sensitivity in-
dices. With 12 simulations per parameter set, the Sobol GSA needed a
total of 60,834,696 simulations, which required 60,217 CPU hr on
Ceres and approximately 301 h of wall-clock time. To minimize com-
putational expense, simulations for the GSA were conducted only for
the ASCE-HR ET method (Table 1).

2.7. Global sensitivity analysis

To gain insights on Cotton2K responses to adjustment of model
input parameters, a Sobol GSA (Cariboni et al., 2007; Pianosi et al.,
2016; Saltelli et al., 2000) was conducted using algorithms from the
SALib package in Python (Saltelli, 2002; Saltelli et al., 2010; Sobol,
2001). An astute reader will note that less computationally intensive
sensitivity analyses are normally conducted first, followed by more
intensive methods like Sobol GSA. Here, only Sobol GSA was used,
because 1) the availability of high-performance computing resources
ensured efficiency of simulations and 2) subsequent portions of the
workflow also incorporated the Sobol sampling aspect of the Sobol GSA
(Fig. 1).

Using algorithms from the SALib package, first-order, second-order,
and total sensitivity indices were calculated for each combination of the
72 input parameters and 22 agroecosystem metrics. The %RMSE sta-
tistic for each agroecosystem metric was used as the objective function
for sensitivity index calculations. Based on the recommendation of
Zhang et al. (2015), any parameter having a first-order sensitivity index
greater than 0.05 for any of the 22 agroecosystem metrics was con-
sidered an influential parameter and remained flexible in the sub-
sequent analysis (Fig. 1; Table 4). Other parameters were considered
non-influential and were fixed to default values for the remainder of the
analysis. The overall purpose of the Sobol GSA was to eliminate non-
influential parameters prior to using multiple objective optimization for
model calibration.

2.8. Second sobol sampling

The GSA results suggested that only 35 of the 72 Cotton2K

parameters influenced the simulation outcomes (Table 4). Subse-
quently, the Sobol sampling algorithm in SALib was again used to
choose Cotton2K parameter sets but only among the influential para-
meters as identified by the Sobol GSA. A second GSA based on the re-
duced parameter set was not conducted. Instead, simulation results
based on the second Sobol sampling was used for multiobjective opti-
mization to identify the parameter sets that provided optimal agree-
ment between measured and simulated results. It was assumed that the
best solutions to the multiobjective optimization problem were among
the parameter sets chosen by the second iteration of Sobol sampling
(Fig. 1).

Each Sobol parameter set was used for simulations of the 12
Cotton2K scenarios (Table 2) using three different ET methods in the
model (Table 1), resulting in three model response databases that
linked parameter sets to %RMSE outcomes for each agroecosystem
metric (Table 3). Using the same Sobol N parameter for these runs
( =N 34,723), the number of n-dimensional parameter sets ( =n 35)
chosen by Sobol was + =N n(2 2) 2,500,056. With 12 simulations per
parameter set for three ET approaches, this analysis needed 90,002,016
simulations, which required 89,889 CPU hr on Ceres and approximately
449 h of wall-clock time (Table 5).

2.9. Multiobjective optimization

Because there were 22 agroecosystem metrics to consider (Table 3),
optimizing the Cotton2K parameterization required multiobjective op-
timization (MOO) techniques (Taboada et al., 2007). The objective
function to be optimized incorporated k unique %RMSE calculations,
one for each agroecosystem metric ( =k 22), expressed as

= …f f f fm s m s m s m s( , ) ( ( , ), ( , ), , ( , ))k k kMOO 1 1 1 2 2 2 (3)

where the terms are as described for Equation (2). Equation (3) re-
presents the set of %RMSE calculations (Eq. (2)) for each of k agroe-
cosystem metrics, based on the results of simulations for a given
parameter set among more than 2.5 million sets tested (Table 5). The
first step toward reduction of plausible parameter sets was to calculate
the subset of Pareto optimal solutions (Cheikh et al., 2010), which were
the solutions that were not dominated (or non-dominated) by any other
solution. In mathematical terms, a solution x1 dominates another so-
lution x2 if the following two conditions are met:

• ≤f x f x( ) ( )i i1 2 for all ∈ …i k{1,2, , }
• <f x f x( ) ( )j j1 2 for at least one ∈ …j k{1,2, , }

In words, a solution dominates another if the %RMSE calculations
for k agroecosystem metrics are all less than or equal to that for the
other, and at least one %RMSE calculation is less than that for the other.
The goal was to find the parameter sets with %RMSE calculations that
were not dominated by the %RMSE calculations for any other para-
meter set. A Python script was developed to calculate the Pareto op-
timal solution set for each Cotton2K ET method. Efficiencies in com-
putation were gained by sorting the data set such that non-dominated
solutions were more likely evaluated first (Mishra and Harit, 2010),
ceasing evaluation of a solution immediately after determining it was
dominated, and using Python's “multiprocessing” package to divide
computational load among processors on Ceres.

A known problem with Pareto optimal sets is that they often remain
large and cumbersome, and they do not adequately ease the burden of
selecting one or several practical solutions. Taboada et al. (2007) tested

Table 4 (continued)

Parameter Function LB UB GSA CIMIS-DY CIMIS-HR ASCEK-HR

ETSKC ASCEK-HR ET method parameter 0.50 0.90 0.60 0.60 0.60

a Carbon, C; lower bound, LB; physiological day, PD; soil matric potential, SMP; upper bound, UB.

Table 5
Details of the Sobol sampling and Cotton2K simulations for two phases in the
simulation workflow: Sobol global sensitivity analysis (GSA) and multiobjective
optimization (MOO).

GSA MOO

N for Sobol sampling 34,723 34,723
No. of parameters (n) 72 35
No. of Sobol sets ( +N n(2 2)) 5,069,558 2,500,056
No. of scenarios per set 12 12
No. of tested ET methods 1 3
No. of simulations 60,834,696 90,002,016
Simulation duration (CPU hr) 60,217 89,889
Simulation duration (hr) 301 449
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two approaches to aid selection of practical solutions by “pruning” the
Pareto optimal set: one based on a clustering technique and another
based on a user-defined priority ranking among the set of objective
functions (Eq. (3)). Borrowing from the latter strategy, a Python script
was created to reevaluate each Pareto optimal solution and combine the
k objective function outcomes to a single evaluation criterion by as-
signing random weightings approximately in order of objective function
priority. Specifically, k random weightings ∑ == ww( : 1.0)i

k
i1 were

computed by using Python's “numpy” package to 1) generate k random
numbers from a uniform distribution ≤ ≤ ∀ ∈ …r i kr( : 0 1 {1,2, , }i ), 2)
sort r from highest to lowest, and 3) calculate

⎜ ⎟= ⎛
⎝

∑ ⎞
⎠

∀ ∈ …=w r r i k/ {1,2, , }i i j
k

j1 . Given the objectives of this study

and that crop yield and water use are commonly the most important of
agroecosystem metrics, the priority of objective functions were speci-
fied in the following order: ET, FBY, LAI, SCY, CHT, SDY, NOD, LDM,
SDM, GBL, MBL, and BDM, followed by the ten soil water content
measurements from top to bottom in the profile (Table 3). Weightings
were iteratively assigned to objective function in order of priority, but
to relax strictness of the subjectively chosen order, weightings were
assigned randomly from the highest three remaining weightings. (This
allowed the algorithm to vary the objective function priority at each
iteration while generally preserving the priority overall.) The evalua-
tion criterion, c, was then computed for each solution in the Pareto
optimal set

∑=
=

c w f m s( , )
i

k

i i i i
1 (4)

and the solution having the minimum c was identified as a “pruned”
Pareto optimal solution. To ensure equal treatment among objective
functions, the values f m s( , )i i i for each objective function (i.e., see
Equation (2)) were normalized from 0.0 to 1.0 prior to computing c.
The process of random weighting computation and c computation was
iterated until 100,000 iterations passed without identification of a new
pruned solution. The set of pruned Pareto optimal solutions determined
from this process was used for all further analysis.

The Pareto optimal sets for each of the three Cotton2K ET methods
were pruned using identical random weightings. Multiple trials of the
pruning algorithm produced very similar results, which highlighted the
consistency of the approach. Because the algorithm also counted the
number of times a particular pruned solution was selected, a single,
“most popular” solution could be identified. However, according to the
definition of multiobjective optimization, all solutions in the Pareto
optimal set have equal feasibility as a solution to the optimization
problem.

2.10. ET method comparison

The performance of the three Cotton2K ET methods (Table 1) was
compared by conducting an analysis of variance (ANOVA) on %RMSE
results for each of the 22 agroecosystem metrics (Table 3) among the
pruned Pareto optimal solutions. Tukey's multiple comparisons tests
were also conducted to identify which Cotton2K ET method resulted in
statistically different %RMSE values for each agroecosystem metric
( ≤p 0.05), and the lowest of these identified the better ET method for a
given metric. Statistical analysis was conducted using the R Project for
Statistical Computing software (www.r-project.org).

Further efforts involving measured and simulated crop coefficient
plots were used to evaluate and compare ET time series for the “most
popular” Pareto optimal solution for each ET method. DeJonge and
Thorp (2017) demonstrated how crop coefficient methods can be used
to assess the ET outputs of agroecosystem models relative to either
measured or theoretically expected crop coefficient time series (Allen
et al., 1998). The approach required daily calculation of the evapora-
tion coefficient (Ke= E/ETos), the basal crop coefficient adjusted for

water stress (KcbKs=T/ETos), and the single crop coefficient (Kc= ET/
ETos), where E, T, and ET are the daily Cotton2K-simulated outputs for
soil water evaporation, plant transpiration, and evapotranspiration,
respectively. Furthermore, measured Kc values were computed from the
weighing lysimeter data.

3. Results

3.1. Global sensitivity analysis

The GSA identified 35 influential parameters of the 72 included in
the analysis (Table 4). These parameters contributed most substantially
to sensitivity in the model outputs. As expected, sand and clay para-
meters at each soil depth had the greatest influence on the simulated
soil water contents near that depth. The SMPFC parameter (soil matric
potential at field capacity) was most influential on simulated soil water
content in the deeper soil layers from 120 to 200 cm, while the SMPFD
(soil matric potential at which free drainage occurred) parameter was
influential on soil water content throughout the entire soil profile.

Six variety parameters were influential for four or more of the
agroecosystem metrics: VARPAR01, VARPAR04, VARPAR31,
VARPAR32, VARPAR47, and VARPAR49. Four of the 22 agroecosystem
metrics, including LAI, LDM, CHT, and NOD, were sensitive to the
VARPAR01 parameter, which adjusts plant growth simulations in re-
sponse to plant density. The VARPAR04 parameter, which controls
growth potential of leaves at prefruiting nodes, mainly influenced ET
and soil water contents at 10, 70, and 90 cm, likely through its effects
on LAI. The VARPAR31 parameter had greatest effects on ET, CHT, and
soil water contents at all the soil depths. The parameter defines the
physiological days required for developing the fourth through the ninth
prefruiting nodes and thus has great effect on late stage vegetative
growth prior to fruiting. Similarly, VARPAR32 defines the physiological
days for development of the first and second prefruiting nodes and was
influential on ET and soil water contents at 3 of the 10 depths.
VARPAR47 through VARPAR50 are used to calculate the probability of
fruit abscission as a function of fruit age, and these were the most in-
fluential parameters on GBL, FBY, SDY, and SCY.

Other influential parameters had more specific effects on Cotton2K
outputs. VARPAR12, which controls stem growth potential, primarily
influenced SDM. VARPAR21 and VARPAR22 both influenced CHT
through their effects on calculations of mainstem growth as a function
of prefruit node age after second square. Likewise, VARPAR26 has a
multiplicative effect on daily vertical stem growth and was therefore
influential on CHT simulations. Booker et al. (2014) also identified
VARPAR26 as a highly influential parameter. VARPAR30 acts as a
multiplier on the temperature function used to calculate squaring date,
and it was influential on GBL. As expected, both LAI and LDM were
sensitive to VARPAR34, which sets the initial leaf area of prefruiting
leaves. VARPAR35, which was influential on CHT, affects the calcula-
tion of physiological days between successive fruiting branches. Results
of the GSA were often intuitive and helped to identify influential model
parameters for subsequent model parameterization efforts (Table 4;
Fig. 1).

3.2. Multiobjective optimization

Recalling that the second Sobol sampling resulted in 2,500,056
Cotton2K parameter sets that were evaluated using multiobjective op-
timization (Table 5), calculation of the Pareto optimal solutions for the
CIMIS-DY, CIMIS-HR, and ASCEK-HR ET methods reduced the number
of plausible solutions to 461,448, 369,347, and 419,784, respectively.
Thus, the Pareto optimal solution set eliminated up to 85% of the total
evaluated solutions, although the remaining number was still very
large. Pruning the Pareto optimal solutions using the objective function
weighting approach further reduced the number of solutions to 19, 12,
and 22 for the CIMIS-DY, CIMIS-HR, and ASCEK-HR ET methods,
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respectively. This means the multiobjective optimization technique
could reduce the solution set to better than 0.0009% of the total eval-
uated solutions. The result highlighted the difficulty of practical deci-
sion making from the Pareto optimal set, while pruning the set based on
limited user input (i.e., the order of objective function importance)
substantially reduced the number of solutions and improved the prac-
ticality of determining a feasible model parameterization.

3.3. Statistical analysis

Simulation results among the three ET methods in Cotton2K
(Table 1) were different ( ≤p 0.05) for 15 of the 22 agroecosystem
metrics: ET, LAI, SCY, CHT, SDY, NOD, LDM, GBL, MBL, and soil water
content at 10, 30, 50, 130, 150, and 190 cm (Table 6). With the ASCEK-
HR method, ET was simulated significantly better than with the other
two ET methods, although the mean %RMSE improvement was less
than 1%. Because the %RMSE calculation for ET involved more than
3700 data values (Table 3), %RMSE variation among the pruned Pareto
optimal sets was low, which contributed to the significant difference
among ET methods. The ASCEK-HR method also performed sig-
nificantly better than the other two ET methods for CHT, GBL, and soil
water content at 130 cm. However, the CIMIS-DY method performed
significantly better than both the other two methods for SDY. The
CIMIS-HR method did not perform significantly better than both the
other methods for any of the agroecosystem metrics. Collectively,
CIMIS-DY and CIMIS-HR both performed better than ASCEK-HR for
SCY, LDM, and soil water contents at 10, 30, and 50 cm. Thus, the
statistical results demonstrated no clear winner among the three ET
methods. Generally, each ET method statistically outperformed the
other methods for one or more metric but not without significantly
underperforming on a different metric. An exception was in the

comparison of CIMIS-DY and CIMIS-HR, where the results showed no
advantage to using directly measured hourly weather data (CIMIS-HR)
as compared to estimating hourly weather from daily measurements
based on Ephrath et al. (1996) (CIMIS-DY). That is, CIMIS-DY per-
formed as well as or better than CIMIS-HR for all 22 agroecosystem
metrics, an unexpected result but nonetheless demonstrated statisti-
cally. Importantly, based on comparisons to daily measurements from
weighing lysimeters at Bushland, the ASCEK-HR standardized ET
method statistically outperformed the CIMIS-DY and CIMIS-HR
methods for simulating ET in Cotton2K.

3.4. Model evaluation

The pruning algorithm iterated 465,213 times to identify 22 or less
pruned Pareto optimal solutions for each ET simulation method. Among
the results at each iteration, the most popular solutions for the CIMIS-
DY, CIMIS-HR, and ASCEK-HR methods were selected 63%, 86%, and
61% of the time. The most popular solutions for CIMIS-HR and ASCE-
HR were identical (Table 4), perhaps because these two ET approaches
used the same weather input data. For CIMIS-DY, a different solution
was most popular. The solution identified as the most popular for each
method (i.e., most commonly selected by the pruning algorithm) was
used to parameterize Cotton2K for all further evaluations of the model.
Of the 2,500,056 evaluated parameter sets, only one parameter set was
commonly present in the pruned Pareto optimal solutions for all three
ET methods, but it was not a most popular solution for any method.

To more fully evaluate the ET simulations in Cotton2K, the simu-
lation timeframe was divided into sections dominated by soil water
evaporation (1 January through 31 May) and transpiration (1 June
through 30 September). (Because Cotton2K simulations terminated on
the specified harvest date (Table 2), availability of information for
November and December was inconsistent, so it was not included here.)
Cotton2K consistently underestimated cumulative ET during the soil
water evaporation-dominated portion with %RMSE > 44% for all three
ET methods (Fig. 2a). Because soil water evaporation is simulated based
only on the water content of the top soil layer, the underestimation may
be due to inadequate simulation of upward water flux from deeper soil
layers. For example, if the simulated soil water evaporation demand is
larger than the upward water flux into the top soil layer, soil water
evaporation will decline even though the next deepest soil layer may
have plenty of water to meet the demand. Cumulative ET during the
transpiration-dominated period was also consistently underestimated
by the model (Fig. 2b) for all ET methods. The %RMSE for the ASCEK-
HR method (17.2%) was lowest among the ET methods with better
performance apparent at the extreme levels of ET, corresponding to
fully irrigated treatments. Overall, after thorough evaluation of Cot-
ton2K parameterization options with three ET simulation strategies,
Cotton2K consistently underestimated ET as compared to ET measure-
ments from the Bushland weighing lysimeters (Fig. 2).

The Cotton2K simulations of LAI were mostly overestimated for LAI
< 2.5m2m−2 and underestimated for LAI> 2.5m2m−2 (Fig. 2c). Only
the fully irrigated treatments in 2001 and 2008 achieved a maximum
LAI of 3.0m2m−2 or more. Thus, the model was generally unable to
fully respond to plant growth conditions under full irrigation, while also
often drastically overestimating LAI for water-limited conditions. Si-
mulation results for SCY were moderately accurate (Fig. 2d), although
the SCY results for the ASCEK-HR ET method were worse than for the
other two methods. Overall, Cotton2K simulations of LAI and SCY were
poorer than that obtained with a different agroecosystem model at a
nearby research station in west Texas (Modala et al., 2015) and in
central Arizona (Thorp et al., 2017). Note that the %RMSE statistics for
LAI and SCY are different in Fig. 2 as compared to Table 6, because the
latter provides mean %RMSE among solutions in the pruned Pareto
optimal set while the former reports %RMSE for the most popular
pruned Pareto optimal solution.

Table 6
Analysis of variance results (F statistics and p values) and Tukey's multiple
comparisons tests among the pruned Pareto optimal solutions from Cotton2K
simulations using three evapotranspiration methodologies (CIMIS-DY, CIMIS-
HR, and ASCEK-HR). The group means for percent root mean squared errors (%
RMSE) are given for each evapotranspiration method and agroecosystem me-
tric, and statistically better performing methods for each metric are highlighted
in bold. a

Metric F p value CIMIS-DY CIMIS-HR ASCEK-HR

%RMSE %RMSE %RMSE

ET 5.84 0.0053** 60.5 a 60.9 a 59.6 b
FBY 0.26 0.7700 47.6 a 45.5 a 46.4 a
LAI 4.67 0.0138* 62.6 ab 64.6 a 60.7 b
SCY 6.20 0.0039** 40.7 a 43.9 ab 44.6 b
CHT 7.10 0.0019** 30.9 a 31.7 a 27.1 b
SDY 17.97 0.0000*** 41.8 a 47.7 b 48.3 b
NOD 7.85 0.0011** 17.0 a 21.9 b 16.1 a
LDM 3.54 0.0366* 56.9 a 61.1 ab 61.1 b
SDM 2.18 0.1240 88.4 a 87.1 a 83.5 a
GBL 30.38 0.0000*** 96.8 a 113.5 b 81.2 c
MBL 5.67 0.0060** 94.6 ab 106.9 b 80.3 a
BDM 2.57 0.0863 58.8 a 64.5 a 59.8 a
SWC010 10.22 0.0002*** 36.6 a 36.7 a 40.0 b
SWC030 29.87 0.0000*** 21.3 a 20.2 a 23.7 b
SWC050 3.31 0.0449* 22.6 a 23.5 ab 23.9 b
SWC070 0.19 0.8240 28.8 a 29.1 a 28.6 a
SWC090 2.19 0.1230 32.6 a 33.1 a 31.5 a
SWC110 0.74 0.4830 30.6 a 30.8 a 29.9 a
SWC130 4.84 0.0120* 35.8 a 36.4 a 33.8 b
SWC150 4.25 0.0197* 34.0 ab 35.7 b 33.6 a
SWC170 1.37 0.2630 37.8 a 39.6 a 37.2 a
SWC190 4.97 0.0108* 31.7 a 35.3 b 32.2 a

a Boll dry matter, BDM; canopy height, CHT; evapotranspiration, ET; fiber
yield, FBY; green boll number, GBL; leaf area index, LAI; leaf dry matter, LDM;
mature boll number, MBL; mainstem node number, NOD; cottonseed yield,
SDY; seed cotton yield, SCY; stem dry matter, SDM; soil water content; SWC.
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3.5. Evapotranspiration behavior

As suggested by DeJonge and Thorp (2017), analysis of the crop
coefficients (i.e., Kc, KcbKs, and Ke) as computed from simulated ET
variables and ETos can reveal insights about model behavior and
functionality, as well as the reasonableness of simulated transpiration
and soil water evaporation time series. The approach is also useful for
further comparisons among ET simulation methods. Crop coefficient
plots for simulations of the fully irrigated 2008 NELYS field generally
showed similar behavior between the three ET methods (Fig. 3). For
example, all three methods demonstrated similar pre-season (DOY
100–160) and post-season (DOY 275–300) spikes in Kc, indicating in-
creased soil water evaporation (and Ke) due to precipitation events.
However, the pre-season peaks in simulated Kc were not as high as
measured Kc from the lysimeter, indicating underestimated soil water
evaporation no matter which ET algorithm was used. Mid-season Kc

from DOY 190 to 240 was better simulated with the ASCEK-HR method
than with the CIMIS methods, as compared to Kc from lysimetry. Gross
underestimation of Kc at the end of the season from DOY 260 to 275
contributed to the general trend of underestimated ET during the
transpiration-dominated portion of the season (Fig. 2b) and indicates
need for improvements to the late-season transpiration calculations.

Other aspects of the crop coefficient curves highlighted localized
differences among the simulated ET time series. Although the %RMSE
between measured and simulated ET were not different for CIMIS-HR
and CIMIS-DY (Table 6), visual differences in mid-season Kc (DOY

220–240) indicated different simulated ET time series for the two CIMIS
methods (Fig. 3). During this time, the field received 106mm of pre-
cipitation over a five day period (DOY 226–230). Despite simulation of
full canopy during these days (LAI > 2.6; not shown), the CIMIS-DY
method simulated higher evaporation with Ke ranging from 0.37 to
0.50. This resulted in high Kc values reaching 1.74 for CIMIS-DY on
DOY 230 (Fig. 3a). The Ke results for CIMIS-HR and ASCEK-HR were
smaller during this time: 0.29–0.34 (Figs. 3b) and 0.19–0.31 (Fig. 3c),
respectively. This reduced Kc to 1.22 or less for CIMIS-HR and ASCEK-
HR, which is closer to a more typical mid-season value. The result was
likely due to providing precipitation data in hourly versus daily
amounts. Specifying rain events hourly allowed infiltration processes to
be simulated over several timesteps, while specifying daily rainfall
amounts filled the top soil layer in a single timestep and increased
opportunity for soil water evaporation thereafter.

Because the ASCEK-HR method generally had high LAI (Fig. 2c) and
thus Kcb (Eq. (1)), the Ke peaks generally decreased as the season pro-
gressed from DOY 180 to 280 (Fig. 3c). This was a sensible response
because increases in plant growth should further limit soil water eva-
poration, and similar behavior was recently found with another
agroecosystem model (DeJonge and Thorp, 2017). However, neither Ke

time series for CIMIS-DY (Fig. 3a) nor CIMIS-HR (Fig. 3b) demonstrated
this declining trend over the season. The results indicated that the soil
water evaporation routine for the CIMIS methods in Cotton2K should be
further investigated and potentially improved.

Another interesting finding was the drastic changes in transpiration

Fig. 2. Cotton2K simulated versus measured data for a) evaporation-dominated cumulative evapotranspiration prior to the cotton growing season (January 1 through
May 31), b) transpiration-dominated cumulative evapotranspiration during the cotton growing season (June 1 through September 30), c) cotton leaf area index (LAI),
and d) seed cotton yield (SCY). Results are shown for three ET simulation methods: CIMIS-DY, CIMIS-HR, and ASCEK-HR.
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(i.e., KcbKs) as simulated for the 2000 SWLYS field with dryland cotton
production, particularly for the CIMIS ET methods (Fig. 4). Crop coef-
ficients from the CIMIS ET methods exhibited tremendous and see-
mingly unrealistic transpiration variability, whereas the ASCEK-HR
method resulted in a more steady increase in transpiration. For ex-
ample, over a sixteen day period from DOY 178–193, KcbKs for CIMIS-
HR varied from 0.15 to 1.11 and back to 0.28 (Fig. 4b). Because LAI was
simulated as a steadily increasing curve over this time period (not
shown), it seems unlikely that the crop's transpiration potential shifted
from near zero to full potential and back to near zero in just a few days.
The CIMIS-DY method also exhibited a similar large swing in KcbKs

values at this time (Fig. 4a). However, the ASCEK-HR method demon-
strated a more typical KcbKs curve that generally followed the pattern of
biomass growth, because the method intrinsically linked simulated LAI
with transpiration via Equation (1) (Fig. 4c). Because simulated KcbKs

often appeared incongruent with simulated LAI time series (not shown),
the interaction between vegetation production and transpiration needs
further investigation to achieve more reasonable crop coefficient time
series, particularly under water-limited conditions with the CIMIS
methods in Cotton2K.

4. Discussion

Verifying the accuracy of simulation results from agroecosystem
models is a fundamental research question that has generated numerous
studies on techniques for model evaluation, sensitivity analysis, and
model intercomparison. Herein, a novel approach was developed to
compare and highlight deficiencies in Cotton2K simulations based on
three ET algorithms. The main advantage of the approach was its in-
herent objectivity; there was very little effect of subjectivity in the
model comparisons. When subjectivity was required, for example in
specifying the parameter ranges (Table 4), the threshold for sensitivity
indices, or the priority order of agroecosystem metrics (Table 3), the
decision could be applied uniformly among all ET methods. Thus, the
comparisons were more scientifically robust and repeatable, as com-
pared to model intercomparison techniques that involve more sub-
jective model parameterization decisions. Through the use of high-
performance computing, the approach also permitted evaluation of
many more parameter sets than could be practical using manual model
parameterization techniques. Thus, the comparisons could be con-
ducted with a more thorough assessment of model responses to varia-
bility in parameterization.

The results also reinforced an important lesson about agroecosystem
model evaluation when multiple types of measured data are available;

Fig. 3. FAO-56 crop coefficients simulated by Cotton2K using three evapotranspiration methods (CIMIS-DY, CIMIS-HR, and ASCEK-HR) and measured with the
northeast lysimeter under fully irrigated cotton production at Bushland, Texas in 2008.
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it can be difficult to find solutions that improve simulations of all me-
trics simultaneously. Given any two model parameterizations con-
sidered in this study, there was a 15%–18% chance that one para-
meterization was no better than the other when considering all 22
agroecosystem metrics. The implications for manual calibration are
potentially freeing for perfectionist modelers who are frustrated when
they can no longer improve simulations of one metric without wor-
sening simulations of another. That is, the calibration effort may have
approached a solution within the Pareto optimal set, and further efforts
to reduce simulation error among all metrics may be futile.
Furthermore, the number of solutions among the Pareto optimal set is
likely too large to be assessed adequately using manual calibration
methods, but more advanced computational techniques could be used
for further assessment.

The GSA highlighted opportunities to condense and simplify the
crop variety parameters in Cotton2K. Only 15 of 51 variety parameters
were identified by the GSA to substantially influence the simulation
results. Many of the parameters work together in empirical equations to
control a particular aspect of the simulation. For example, three para-
meters are involved in leaf growth on the mainstem nodes, four para-
meters affect post-squaring stem growth, and four other parameters
control the probability of boll abscission (Table 4). Efforts to merge the
effects of such parameters could possibly increase their sensitivity,

while also reducing the complexity of the model parameterization.
However, realistic simulation detail should not be lost in the effort to
reduce parameters. Conducting the GSA for each of the 12 scenarios
separately may also reveal differences in model sensitivity that are
caused by environment.

Using three ET algorithms, Cotton2K simulated ET, LAI, and SCY
with %RMSE between measured and simulated data ranging from
59.6% to 60.9%, 60.7%–64.6%, and 40.7%–44.6%, respectively
(Table 6). However, as reported by Modala et al. (2015) and Thorp
et al. (2017), the %RMSE results for these important agroecosystem
metrics were lower for a different cotton simulation model based on
data from different sites in the western U.S. This result is surprising,
because Cotton2K simulates cotton growth and development and soil
water balance processes in more detail than other cotton simulation
models. For example, Cotton2K simulates a two-dimensional soil profile
and considers development and growth of individual cotton bolls;
whereas, other models simulate these processes with greater simplicity.
Future efforts will focus on evaluation of other cotton models using the
data sets from Bushland, Texas. This will allow a more direct compar-
ison of Cotton2K performance to other models with reduced com-
plexity.

No matter which ET method was used, Cotton2K generally under-
estimated ET as compared to data from the Bushland weighing

Fig. 4. FAO-56 crop coefficients simulated by Cotton2K using three evapotranspiration methods (CIMIS-DY, CIMIS-HR, and ASCEK-HR) and measured with the
southwest lysimeter under dryland cotton production at Bushland, Texas in 2000.
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lysimeters (Fig. 2). Borrowing the terminology of Lamsal et al. (2018),
Cotton2K likely suffered from a lack of “expressibility”, which means
there were possibly no parameterization options that would prevent the
model from underestimating ET, particularly for the CIMIS approaches.
Adjustments of Kcbmax (Eq. (1)) higher than the value recommended by
FAO-56 could possibly increase the transpiration component of ET, but
only for the ASCEK-HR ET method. Alternatively, transpiration might
be increased by expanding the simulated root profile, which is also two-
dimensional in Cotton2K. Because soil water evaporation is supplied
only by the water content of the top soil layer in Cotton2K, under-
estimation of evaporation is likely related to a water limitation in that
layer. Increasing the thickness of the top layer in Cotton2K is a potential
solution to increase the water supply available for evaporation (Lascano
and Van Bavel, 1986). Future work should further investigate and
possibly improve the Cotton2K soil water balance simulation, particu-
larly focusing on how the simulated soil and root profile supplies water
for ET and on the simulated relationships between plant growth and ET.
Also, due to the importance of ET partitioning in models of soil-plant-
atmosphere systems (Kool et al., 2014), data sets that better describe
the soil water evaporation and plant transpiration components of ET are
needed for more thorough model evaluation and improvement.

5. Conclusions

With the development of a novel methodology for making unbiased
Cotton2K parameterization decisions, the study demonstrated how
three ET simulation methodologies could be intercompared while re-
ducing modeler bias and subjectivity. The methodology was useful for
determining statistically whether one ET method performed better than
another. While the present study provided a specific example related to
comparison of ET methods, the approach is likely also useful for com-
parisons of other agroecosystem model components.

The study demonstrated differences ( <p 0.05) in Cotton2K simu-
lations of ET and other agroecosystem metrics among three ET simu-
lation methods. However, none of the tested ET methods could perform
as well as or better than both of the other methods when considering all
metrics collectively. Considering ET alone, the ASCEK-HR method led
to minimal but significant improvements in simulated ET, and crop
coefficient curves were often more realistic. While the three ET
methods had many qualitative and programmatic differences that led to
localized differences in simulated ET time series, the overall contribu-
tion of these differences toward comprehensive improvement of the
simulation results was negligible. To improve ET simulations with
Cotton2K, future research should investigate the simulation meth-
odologies used for soil water flux near the soil surface and for linking
water use with crop growth.
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